

# West Lindsey District Council Annual Status Report 2016

Bureau Veritas

January 2017



#### **Document Control Sheet**

| Issue/Revision    | Issue 1         | Issue 2         | Issue 3         |
|-------------------|-----------------|-----------------|-----------------|
|                   |                 |                 |                 |
| Remarks           | DRAFT           | DRAFT           | FINAL           |
| Date              | January 2017    | January 2017    | January 2017    |
| Submitted to      |                 |                 |                 |
|                   |                 |                 | Paul Bentley –  |
| Prepared by       | <u> </u>        |                 | Assistant       |
|                   |                 |                 | Consultant      |
| Signature         |                 |                 |                 |
|                   | Jamie Clayton – | Jamie Clayton – | Jamie Clayton – |
| Approved by       | Senior          | Senior          | Senior          |
| ,,                | Consultant      | Consultant      | Consultant      |
| Signature         |                 |                 |                 |
| Project<br>number |                 | 6398365         |                 |

#### Disclaimer

This Report was completed by Bureau Veritas on the basis of a defined programme of work and terms and conditions agreed with the Client. Bureau Veritas' confirms that in preparing this Report it has exercised all reasonable skill and care taking into account the project objectives, the agreed scope of works, prevailing site conditions and the degree of manpower and resources allocated to the project.

Bureau Veritas accepts no responsibility to any parties whatsoever, following the issue of the Report, for any matters arising outside the agreed scope of the works.

This Report is issued in confidence to the Client and Bureau Veritas has no responsibility to any third parties to whom this Report may be circulated, in part or in full, and any such parties rely on the contents of the report solely at their own risk.

Unless specifically assigned or transferred within the terms of the agreement, the consultant asserts and retains all Copyright, and other Intellectual Property Rights, in and over the Report and its contents.

Any questions or matters arising from this Report should be addressed in the first instance to the report author.



# 2016 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

January, 2017

## **West Lindsey District Council**

| Local Authority Officer |                                                                                            |
|-------------------------|--------------------------------------------------------------------------------------------|
| Department              | Environmental Protection                                                                   |
| Address                 | West Lindsey District Council Guildhall Marshall's Yard Gainsborough Lincolnshire DN21 2NA |
| Telephone               |                                                                                            |
| E-mail                  |                                                                                            |
| Report Reference number | Annual Status Report 2016                                                                  |
| Date                    | January 2017                                                                               |

### **Executive Summary: Air Quality in Our Area**

Air pollution is an issue that can affect everyone with varying levels of severity. The air that we breathe is essential for health and wellbeing and it shouldn't have to be a cause of detrimental health effects. Where we live, where we work, our travel choices and journeys made can affect the concentrations of certain air pollutants that we are exposed to.

Local authorities have an obligation through the LAQM regime to review and assess the air quality within their administrative regions. Specific measures are implemented by way of an Air Quality Action Plan (AQAP) for areas where poor air quality has been determined, but community engagement led action through education and promotion also helps improving air quality at a local level. Good air quality begins at a local level, with actions being replicated on regional and national scales benefitting wider scale air quality and helping to meet the Air Quality Strategy (AQS) objectives that are set out in EU and UK law.

#### **Air Quality in West Lindsey**

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas<sup>1,2</sup>.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion<sup>3</sup>.

The main source of air pollution in the District is road traffic emissions from vehicles using major roads, notably the A15 that runs from Lincoln to the M180, the A631 east of Gainsborough, and the A46 running from Lincoln to Caistor. There are currently no Air Quality Management Areas (AQMAs) declared in the West Lindsey District Council area.

<sup>&</sup>lt;sup>1</sup> Environmental equity, air quality, socioeconomic status and respiratory health, 2010

<sup>&</sup>lt;sup>2</sup> Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

<sup>&</sup>lt;sup>3</sup> Defra. Abatement cost guidance for valuing changes in air quality, May 2013

#### **Actions to Improve Air Quality**

A monitoring network of nitrogen dioxide (NO<sub>2</sub>) diffusion tubes is in place within the District and currently does not show any exceedences of the annual mean AQS objective for NO<sub>2</sub> at any relevant locations. In addition there is an automatic monitoring station at Gainsborough Cemetery operated by EDF Energy that monitors real-time concentrations of NO<sub>2</sub> and sulphur dioxide (SO<sub>2</sub>). This monitoring network is set to continue acting as a system to monitor changes in concentration of NO<sub>2</sub> and SO<sub>2</sub> and to identify any changes in concentration trends.

Being a rural District, air quality within West Lindsey has historically been in compliance with the AQS objectives. With continued levels of development being experienced across the country, an emphasis on air quality is important to ensure areas of poor air quality are identified and acted upon. Across the District air quality continues to be assessed through the current monitoring network, whereby any areas of poor air quality would be identified.

#### **Local Priorities and Challenges**

There are currently no AQMAs designated within West Lindsey, and it is a priority for this to remain. Although monitoring has shown NO<sub>2</sub> concentrations to be below the AQS objectives within the District there are still a number of challenges in relation to air quality within the District.

Any new developments within the District will continue to be assessed on an individual basis to ensure that it is not detrimental to local air quality. In addition any new industry will be permitted in line with The Environmental Permitting (England and Wales) Regulations 2010.

#### How to Get Involved

A number of initiatives can be completed by everyone to help reduce air pollution concentrations on a local scale, these include:

- Using alternative modes of transport to the car, walking, cycling or using public transport;
- Changes in transport mode can bring added health benefits through walking and cycling exercise; and

#### **West Lindsey District Council**

• Asking your employer, school or college about the possibility of developing a green travel plan.

# **Table of Contents**

| E  | xecuti  | ve Summary: Air Quality in Our Area                                       | i  |
|----|---------|---------------------------------------------------------------------------|----|
|    | Air Qu  | uality in West Lindsey                                                    | i  |
|    | Action  | ns to Improve Air Quality                                                 | ii |
|    | Local   | Priorities and Challenges                                                 | ii |
|    | How t   | o Get Involved                                                            | ii |
| 1  | Lo      | cal Air Quality Management                                                | 1  |
| 2  | Ac      | tions to Improve Air Quality                                              | 2  |
|    | 2.1     | Air Quality Management Areas                                              | 2  |
|    | 2.2     | Progress and Impact of Measures to address Air Quality in West Lindsey    | 2  |
|    | 2.3     | PM <sub>2.5</sub> – Local Authority Approach to Reducing Emissions and or |    |
|    | Conce   | entrations                                                                | 3  |
| 3  | Aiı     | r Quality Monitoring Data and Comparison with Air Quality                 |    |
| 0  | bjecti  | ves and National Compliance                                               | 4  |
|    | 3.1     | Summary of Monitoring Undertaken                                          | 4  |
|    | 3.1     | .1 Automatic Monitoring Sites                                             | 4  |
|    | 3.1     | .2 Non-Automatic Monitoring Sites                                         | 4  |
|    | 3.2     | Individual Pollutants                                                     | 4  |
|    | 3.2     | .1 Nitrogen Dioxide (NO <sub>2</sub> )                                    | 4  |
|    | 3.2     | 1 ( 2)                                                                    |    |
| A  | ppend   | lix A: Monitoring Results                                                 | 6  |
| A  | ppend   | lix B: Full Monthly Diffusion Tube Results for 2015                       | 12 |
| A  | ppend   | lix C: Supporting Technical Information / Air Quality Monitoring          |    |
| D  | ata Q   | VQC                                                                       | 13 |
| A  | ppend   | lix D: Maps of Monitoring Locations                                       | 16 |
| A  | ppend   | lix E: Summary of Air Quality Objectives in England                       | 19 |
| G  | lossaı  | ry of Terms                                                               | 20 |
|    |         | nces                                                                      |    |
|    |         |                                                                           |    |
| Li | st of 7 | Tables                                                                    |    |
|    |         | .1 – Details of Automatic Monitoring Sites                                |    |
|    |         | .2 – Details of Non-Automatic Monitoring Sites                            |    |
|    |         | .3 – Annual Mean NO <sub>2</sub> Monitoring Results                       |    |
|    |         | .5 – SO <sub>2</sub> Monitoring Results                                   |    |
| Ta | able B  | .1 – NO <sub>2</sub> Monthly Diffusion Tube Results - 2015                | 12 |
| Ta | able E  | .1 – Air Quality Objectives in England                                    | 19 |

## **West Lindsey District Council**

#### **List of Figures**

| Figure A.1 – Trends in Annual Mean NO <sub>2</sub> Concentrations Measured at the Diff | usion  |
|----------------------------------------------------------------------------------------|--------|
| Tube Monitoring Sites                                                                  | 10     |
| Figure A.2 – Trends in Annual Mean NO <sub>2</sub> Concentrations Measured at Gainsb   | orough |
| Cemetery Automatic Monitor                                                             | 11     |
| Figure C.1 – Local Bias Correction Output: Gainsborough Cemetery                       | 13     |
| Figure D.1 – Map of Automatic Monitoring Location                                      | 16     |
| Figure D.2 – Map of Non-Automatic Monitoring Sites: Gainsborough                       | 17     |
| Figure D.3 – Map of Non-Automatic Monitoring Sites: Market Rasen                       |        |
|                                                                                        |        |

### 1 Local Air Quality Management

This report provides an overview of air quality in West Lindsey during 2015. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by West Lindsey to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

### 2 Actions to Improve Air Quality

#### 2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

Currently there are no AQMAs designated within West Lindsey.

Based on the NO<sub>2</sub> monitoring results from 2015 and previous years being consistently below the relevant AQS objectives (see monitoring section, Appendix A), it is not proposed to declare any new AQMAs within the District.

# 2.2 Progress and Impact of Measures to address Air Quality in West Lindsey

Air quality within West Lindsey, as in previous years, remains significantly below the AQS objectives. Regardless, the Council is committed to improving air quality within its boundaries. The Central Lincolnshire Local Plan is currently at the final consultation stage and is set to be adopted in December 2016. Once the new Local Plan is in place developments will be required to demonstrate that they do not have any adverse impacts upon local air quality.

There are currently no designated AQMAs within West Lindsey and therefore an AQAP has not been required. The general air quality within the District is considered to be good, and as such West Lindsey has not been required to implement any direct or specific measures related to the control and mitigation of sources of local air pollution.

The priorities for West Lindsey for the coming year are to continue with the current NO<sub>2</sub> diffusion tube monitoring network to identify any potential exceedences of the AQS objectives, to continue to assess any planning applications received in relation to air quality and to ensure that any development do not have a detrimental effect upon local air quality.

# 2.3 PM<sub>2.5</sub> – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of  $PM_{2.5}$  (particulate matter with an aerodynamic diameter of  $2.5\mu m$  or less). There is clear evidence that  $PM_{2.5}$  has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

There is currently no ongoing monitoring of  $PM_{10}$  or  $PM_{2.5}$  within West Lindsey. Due to this, and the fact that there are currently no specific concerns regarding the air quality within the District there are no specific measures in place to address  $PM_{2.5}$  concentrations.

# 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

#### 3.1 Summary of Monitoring Undertaken

#### 3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

West Lindsey undertook automatic (continuous) monitoring at 1 site during 2015. Table A.1 in Appendix A shows the details of the sites. The Gainsborough Cemetery site is operated by EDF Energy as part of a monitoring network to monitor emissions from the 'North Trent' group of power stations.

A map showing the location of the monitoring site is provided in Figure D.1 in Appendix D.

#### 3.1.2 Non-Automatic Monitoring Sites

West Lindsey undertook non-automatic (passive) monitoring of NO<sub>2</sub> at 11 sites during 2015. Table A.3 in Appendix A shows the details of the sites.

Maps showing the location of the monitoring sites are provided in Figure D.2 and Figure D.3 in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

#### 3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C.

#### 3.2.1 Nitrogen Dioxide (NO<sub>2</sub>)

Table A.3 in Appendix A compares the ratified and adjusted monitored  $NO_2$  annual mean concentrations for the past 4 years with the air quality objective of  $40\mu g/m^3$ . All monitoring locations continue to be well below the annual mean AQS objective for  $NO_2$ . The highest concentration was  $26.8\mu g/m^3$  recorded at the diffusion tube monitoring location WL7 which is located at 3 Lea Road, Gainsborough.

#### **West Lindsey District Council**

Concentration trend graphs are presented in Figure A.1 and Figure A.2. The majority of diffusion tube concentrations, as shown in Figure A.1 present a downward trend in concentrations. There were a number of locations where 2015 concentration results were the highest recorded between 2012 and 2015; WL1, WL2, WL7, WL9 and WL11. All of these results were still far below the NO<sub>2</sub> AQS annual mean objective of 40µg/m<sup>3</sup>.

The concentrations at the Gainsborough Cemetery monitoring site have decreased every year from 2012 to 2015, and therefore the concentration results present a downward trend. This downward trend is presented in Figure A.2.

For the diffusion tubes, the full 2015 dataset of monthly mean values is provided in Table B.1 in Appendix B.

Table A.4 in Appendix A compares the ratified continuous monitored  $NO_2$  hourly mean concentrations for the past 4 years with the air quality objective of  $200\mu g/m^3$ , not to be exceeded more than 18 times per year. For the past 4 years there has not been a single exceedence of the AQS hourly objective at the Gainsborough Cemetery monitoring location.

#### 3.2.2 Sulphur Dioxide (SO<sub>2</sub>)

Table A.5 in Appendix A compares the ratified continuous monitored SO<sub>2</sub> concentrations for year 2015 with the air quality objectives for SO<sub>2</sub> presented in Table E.1.

The results presented in Table A.5 show that all AQS objectives for SO<sub>2</sub> continue to be met at the Gainsborough Cemetery monitoring location.

# **Appendix A: Monitoring Results**

**Table A.1 – Details of Automatic Monitoring Sites** 

| Site Name                     | Site Type                      | X OS<br>Grid Ref | Y OS<br>Grid Ref | Pollutants<br>Monitored           | In<br>AQMA? | Monitoring<br>Technique           | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) (2) | Inlet<br>Height<br>(m) |
|-------------------------------|--------------------------------|------------------|------------------|-----------------------------------|-------------|-----------------------------------|-----------------------------------------------------------|---------------------------------------------------|------------------------|
| Gainsborough<br>Cemetery (GC) | Urban<br>Background/Industrial | 482021           | 289974           | NO <sub>2</sub> , SO <sub>2</sub> | No          | Chemiluminescentand UVF analysers | N/A                                                       | N/A                                               | 3                      |

<sup>(1)</sup> Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

<sup>(2)</sup> N/A if not applicable.

**Table A.2 – Details of Non-Automatic Monitoring Sites** 

| Site ID | Site Location                                  | Site<br>Type | X OS Grid<br>Ref | Y OS<br>Grid Ref | In<br>AQMA? | Distance to<br>Relevant<br>Exposure (m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube<br>collocated<br>with a<br>Continuous<br>Analyser? | Height<br>(m) |
|---------|------------------------------------------------|--------------|------------------|------------------|-------------|--------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------|
| WL1     | 19 Spring Gardens, Gainsborough                | R            | 481721           | 389935           | N           | 7.8                                                    | 2.9                                                          | N                                                       | 2.75          |
| WL2     | 58 Etherington Street, Gainsborough            | R            | 481688           | 389770           | Ν           | 20.1                                                   | 1.6                                                          | N                                                       | 2.75          |
| WL3/4/5 | Gainsborough Cemetery, Gainsborough            | В            | 482021           | 389974           | N           | N/A                                                    | 13.8                                                         | Υ                                                       | 3             |
| WL6     | Cherry Tree Road, Gainsborough                 | K            | 482483           | 390014           | N           | 1.7                                                    | 0.2                                                          | N                                                       | 2.75          |
| WL7     | 3 Lea Road, Gainsborough                       | R            | 481526           | 389077           | N           | 0                                                      | 8.6                                                          | N                                                       | 2.75          |
| WL8     | Marshall Way, Gainsborough                     | R            | 483062           | 389224           | Ν           | 11.2                                                   | 15.9                                                         | N                                                       | 2.75          |
| WL9     | Lamas Leas Lane, Market Rasen                  | R            | 510840           | 388610           | N           | 32.4                                                   | 10.2                                                         | N                                                       | 2.75          |
| WL10    | Beeches Way, Market Rasen                      | R            | 510851           | 388475           | N           | 1.2                                                    | 6.9                                                          | N                                                       | 2.75          |
| WL11    | 53 Caistor Rd/ Gallimore Lane,<br>Market Rasen | R            | 510681           | 389675           | N           | 15.1                                                   | 1.7                                                          | N                                                       | 2.75          |
| WL12    | Walkerith                                      | В            | 479811           | 392738           | N           | 51                                                     | 2.0                                                          | N                                                       | 2.75          |
| WL13    | Heaton Street                                  | R            | 481555           | 389891           | N           | 5.9                                                    | 2.22                                                         | N                                                       | 2.75          |

<sup>(1)</sup> Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

NB R - Roadside, B - Background, K - Kerbside

<sup>(2)</sup> N/A if not applicable.

Table A.3 – Annual Mean NO<sub>2</sub> Monitoring Results

| Site ID | Site | Monitoring | Valid Data Capture      | NC   | o <sub>2</sub> Annual Mean Co | ncentration (µg/m | 1 <sup>3</sup> ) <sup>(3)</sup> |
|---------|------|------------|-------------------------|------|-------------------------------|-------------------|---------------------------------|
| One ib  | Type | Type       | 2015 (%) <sup>(1)</sup> | 2012 | 2013                          | 2014              | 2015                            |
| GC      | B/I  | Automatic  | 96.2                    | 16.0 | 15.2                          | 13.8              | 13.6                            |
| WL1     | R    | Passive    | 100                     | 23.4 | 21.7                          | 19.5              | 24.7                            |
| WL2     | R    | Passive    | 100                     | 16.1 | 15.1                          | 14.1              | 19.9                            |
| WL3/4/5 | В    | Passive    | 100/100/100             | 20.2 | 18.8                          | 17.7              | 13.4                            |
| WL6     | K    | Passive    | 100                     | 31.8 | 29.4                          | 26.9              | 16.8                            |
| WL7     | R    | Passive    | 91.7                    | 22.3 | 19.4                          | 19.0              | 26.8                            |
| WL8     | R    | Passive    | 100                     | 19.7 | 18.6                          | 17.4              | 18.1                            |
| WL9     | R    | Passive    | 100                     | 15.7 | 15.8                          | 12.8              | 18.1                            |
| WL10    | R    | Passive    | 100                     | 19.8 | 19.1                          | 18.2              | 13.7                            |
| WL11    | R    | Passive    | 100                     | 17.0 | 15.1                          | 13.7              | 18.8                            |
| WL12    | В    | Passive    | 100                     | 27.1 | 25.4                          | 23.7              | 12.7                            |
| WL13    | R    | Passive    | 100                     | 27.7 | 28.9                          | 24.6              | 24.7                            |

Notes: Exceedances of the  $NO_2$  annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

NO<sub>2</sub> annual means exceeding 60µg/m<sup>3</sup>, indicating a potential exceedance of the NO<sub>2</sub> 1-hour mean objective are shown in **bold and underlined**.

<sup>(1)</sup> data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

<sup>(3)</sup> Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Table A.4 – 1-Hour Mean NO<sub>2</sub> Monitoring Results

| Cita ID | Sito Tomo                       | Monitoring | Valid Data Capture      | NO <sub>2</sub> 1-Hour Means > 200μg/m <sup>3 (3)</sup> |      |      |      |  |  |
|---------|---------------------------------|------------|-------------------------|---------------------------------------------------------|------|------|------|--|--|
| Site ID | Site ID Site Type Type          | Туре       | 2015 (%) <sup>(1)</sup> | 2012                                                    | 2013 | 2014 | 2015 |  |  |
| GC      | Urban Background/<br>Industrial | Automatic  | 13.6                    | 0                                                       | 0    | 0    | 0    |  |  |

Notes: Exceedances of the NO<sub>2</sub> 1-hour mean objective (200µg/m<sup>3</sup> not to be exceeded more than 18 times/year) are shown in **bold**.

- (1) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (2) If the period of valid data is less than 85%, the 99.8<sup>th</sup> percentile of 1-hour means is provided in brackets.

Table A.5 - SO<sub>2</sub> Monitoring Results

|         |                                 | Valid Data<br>Capture for               | Valid Data                         | Number of Exceedances (percentile in bracket) (3) |                                 |                                  |  |  |
|---------|---------------------------------|-----------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------|----------------------------------|--|--|
| Site ID | Site Type                       | monitoring<br>Period (%) <sup>(1)</sup> | Capture 2014<br>(%) <sup>(2)</sup> | 15-minute Objective<br>(266 µg/m³)                | 1-hour Objective<br>(350 μg/m³) | 24-hour Objective<br>(125 μg/m³) |  |  |
| GC      | Urban Background/<br>Industrial | 95.7                                    | 95.7                               | 0                                                 | 0                               | 0                                |  |  |

Notes: Exceedances of the SO<sub>2</sub> objectives are shown in **bold** (15-min mean = 35 allowed a year, 1-hour mean = 24 allowed a year, 24-hour mean = 3 allowed a year)

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%)
- (3) If the period of valid data is less than 85%, the relevant percentiles are provided in brackets.

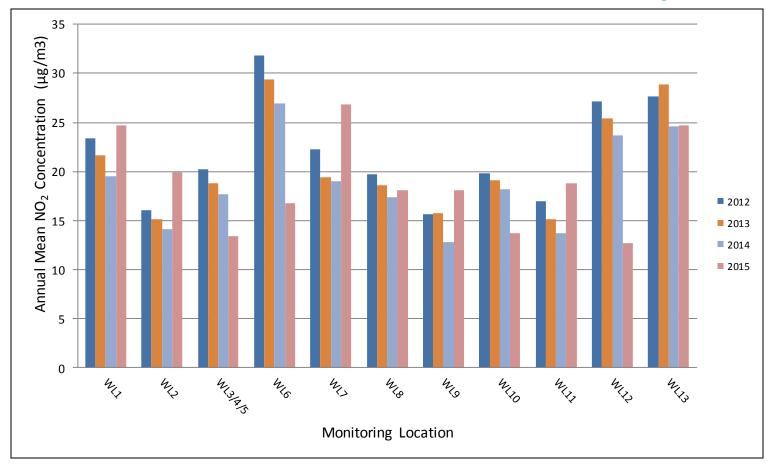
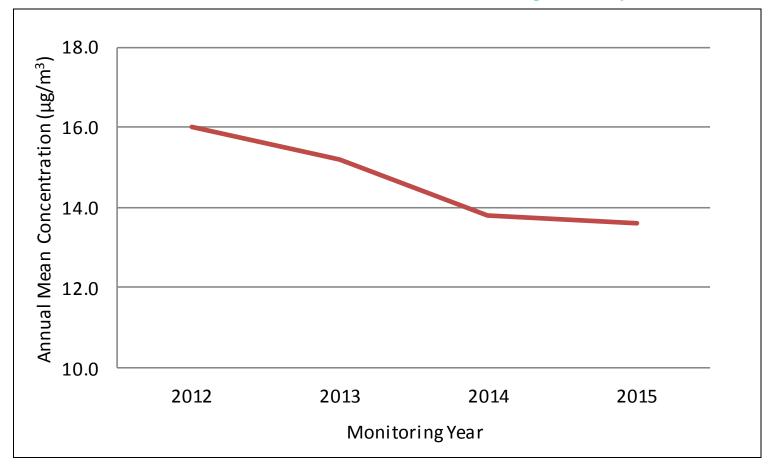




Figure A.1 – Trends in Annual Mean NO<sub>2</sub> Concentrations Measured at the Diffusion Tube Monitoring Sites

Figure A.2 – Trends in Annual Mean NO<sub>2</sub> Concentrations Measured at Gainsborough Cemetery Automatic Monitor



# **Appendix B: Full Monthly Diffusion Tube Results for 2015**

Table B.1 – NO<sub>2</sub> Monthly Diffusion Tube Results - 2015

|         |      | NO <sub>2</sub> Mean Concentrations (μg/m³) |      |      |      |      |      |      |      |      |      |      |             |                  |
|---------|------|---------------------------------------------|------|------|------|------|------|------|------|------|------|------|-------------|------------------|
| 01. ID  |      |                                             |      |      |      |      |      |      |      |      |      |      | Annua       | al Mean          |
| Site ID | Jan  | Feb                                         | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Raw<br>Data | Bias<br>Adjusted |
| WL1     | 32.7 | 31.3                                        | 13.6 | 23.2 | 17.7 | 23.8 | 16.5 | 18.4 | 19.6 | 21.7 | 25.1 | 24.1 | 22.3        | 24.7             |
| WL2     | 23.5 | 24.8                                        | 9.3  | 17.8 | 14.2 | 13.9 | 14.0 | 15.8 | 16.7 | 18.9 | 24.2 | 22.1 | 17.9        | 19.9             |
| WL3     | 16.7 | 17.0                                        | 8.5  | 12.3 | 6.9  | 7.6  | 9.4  | 9.7  | 10.7 | 15.7 | 15.8 | 16.4 | 12.2        | 13.6             |
| WL4     | 18.1 | 19.5                                        | 6.7  | 11.5 | 8.1  | 7.1  | 9.0  | 9.2  | 11.3 | 13.4 | 15.6 | 13.9 | 11.9        | 13.3             |
| WL5     | 15.3 | 21.5                                        | 6.5  | 12.4 | 7.5  | 7.3  | 9.2  | 9.4  | 12.0 | 14.1 | 17.2 | 12.8 | 12.1        | 13.4             |
| WL6     | 20.6 | 22.7                                        | 8.4  | 13.4 | 9.5  | 9.3  | 14.0 | 12.3 | 13.6 | 17.3 | 22.2 | 18.6 | 15.2        | 16.8             |
| WL7     | 27.7 | 28.7                                        | 15.6 |      | 19.5 | 21.6 | 20.1 | 22.9 | 27.8 | 34.1 | 26.9 | 21.1 | 24.2        | 26.8             |
| WL8     | 23.0 | 24.5                                        | 9.1  | 13.7 | 14.6 | 11.7 | 12.7 | 13.7 | 14.3 | 19.8 | 21.7 | 16.9 | 16.3        | 18.1             |
| WL9     | 20.1 | 24.6                                        | 9.1  | 16.1 | 13.5 | 12.2 | 13.4 | 13.5 | 16.2 | 21.0 | 19.7 | 16.1 | 16.3        | 18.1             |
| WL10    | 20.0 | 20.4                                        | 6.8  | 11.0 | 8.3  | 8.0  | 9.0  | 10.0 | 11.7 | 14.3 | 15.3 | 13.2 | 12.3        | 13.7             |
| WL11    | 19.4 | 23.1                                        | 9.5  | 16.9 | 17.4 | 14.8 | 16.8 | 15.0 | 19.4 | 21.1 | 16.8 | 13.2 | 16.9        | 18.8             |
| WL12    | 15.4 | 17.4                                        | 5.6  | 11.8 | 7.0  | 6.9  | 8.4  | 9.4  | 8.9  | 11.9 | 19.0 | 15.7 | 11.5        | 12.7             |
| WL13    | 29.7 | 33.3                                        | 12.2 | 22.4 | 18.4 | 16.0 | 18.9 | 18.6 | 20.1 | 25.9 | 26.2 | 24.7 | 22.2        | 24.7             |

<sup>(1)</sup> See Appendix C for details on bias adjustment

# **Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC**

#### **Sources of Pollution**

West Lindsey have identified no **new sources** within the District as described in Chapter 7, Section 1 of the Defra Technical Guidance LAQM.TG16.

#### **Diffusion Tube Local Bias Adjustment Factor**

There is a triplicate co-located diffusion tube monitoring site within West Lindsey located at the Gainsborough Cemetery automatic monitoring station. A local bias adjustment factor has been calculated from the Precision and Bias Adjustment spreadsheet (v04)<sup>4</sup>, the output is shown below in Figure C.1.

**AEA Energy & Environment** Checking Precision and Accuracy of Triplicate Tubes **Diffusion Tubes Measurements Automatic Method** Coefficient Data Tubes Start Date End Date Tube 1 Tube 2 Tube 3 Triplicate Standard 95% CI Period of Variation Capture Precision dd/mm/yyyy dd/mm/yyyy µgm -3 Deviation µgm<sup>-3</sup> of mear Mean (CV) (% DC) Check

Figure C.1 – Local Bias Correction Output: Gainsborough Cemetery

**Data Quality Check** Automati Monitor Data 07/01/2015 18.1 19.06 04/02/2015 16.7 15.3 1.4 3.5 99.4 Good Good 2 04/02/2015 03/03/2015 17.0 20.98 19.5 21.5 19 2.3 12 5.6 99.2 Good Good 03/03/2015 01/04/2015 8.5 14.84 1.1 99.7 15 2.7 Good Good 4 01/04/2015 29/04/2015 12.3 11.5 99.1 12.4 12 0.5 1.2 12.64 Good Good 29/04/2015 27/05/2015 6.9 8.1 7.5 0.6 1.5 8 99.6 Good Good 6 27/05/2015 01/07/2015 7.1 7.3 0.3 0.6 8 Good Good 7 01/07/2015 29/07/2015 0.2 0.5 Good Good 8 29/07/2015 26/08/2015 9.4 0.3 0.6 10 56.3 Good Data Ca 9 26/09/2015 29/09/2015 10.7 11.3 12.0 11 0.7 6 1.6 12 99.9 Good Good 10 29/09/2015 28/10/2015 15.7 13.4 14.1 14 1.2 8 2.9 16 99.7 Good Good 11 28/10/2015 02/12/2015 15.8 17.2 17 15.6 0.9 99.6 Good 16 2.2 Good 02/12/2015 06/01/2016 13.9 12.8 14.43 16.4 99.8 4.6 Good Good Overall survey --> Overall precision Site Name/ ID: Precision 12 out of 12 periods have a CV smaller than 20% from Accuracy calculations) (with 95% confidence interval) (with 95% confidence interval) Ассигасу WITH ALL DATA Bias calculated using 11 periods of data Bias calculated using 11 periods of data Bias B 25% 1.11 (1 - 1.25) -10% (-20% - 0%) 1.11 (1 - 1.25) Bias factor A Bias factor A 10% (-20% - 0%) 12 μgm<sup>-3</sup> Bias B Bias B 0% noisi **Diffusion Tubes Mean: Diffusion Tubes Mean:** 12 μgm<sup>-3</sup> -25% Mean CV (Precision): Mean CV (Precision): É 14 μgm<sup>-3</sup> **Automatic Mean: Automatic Mean:** 14 µgm<sup>-3</sup> Data Capture for periods used: 100% Data Capture for periods used: 100% Adjusted Tubes Mean: 14 (12 - 15) µgm<sup>-3</sup> Jaume Targa, for AEA Adjusted Tubes Mean: 14 (12 - 15)

#### **Diffusion Tube National Bias Adjustment Factors**

Diffusion tube data for West Lindsey District Council is supplied and analysed by Gradko International Ltd. The tubes were prepared using the 50% TEA in acetone preparation method. The national bias adjustment factor for Gradko 50% TEA in

Version 04 - February 2011

<sup>&</sup>lt;sup>4</sup> AEA\_DifTPAB\_v04.xls, available at http://laqm.defra.gov.uk/bias-adjustment-factors/local-bias.html

acetone is 0.96 for the year 2015 (based on 15 studies, version 09/16) as derived from the national bias adjustment factor spreadsheet<sup>5</sup>.

#### **Discussion of Choice of Factor to Use**

The diffusion tube data has been corrected using a bias adjustment factor, which is an estimate of the difference between the diffusion tube concentration and the continuous monitoring concentration, the latter assumed to be a more accurate method of monitoring. The Defra Technical Guidance LAQM.TG16 provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor based on the comparison of diffusion tube results with data taken from NO<sub>x</sub>/NO<sub>2</sub> continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method.

With regard to the application of a bias adjustment factor for diffusion tubes, the Defra Technical Guidance LAQM.TG16 and the LAQM Helpdesk<sup>6</sup> recommend the use of a local bias adjustment factor where available and relevant to diffusion tube sites.

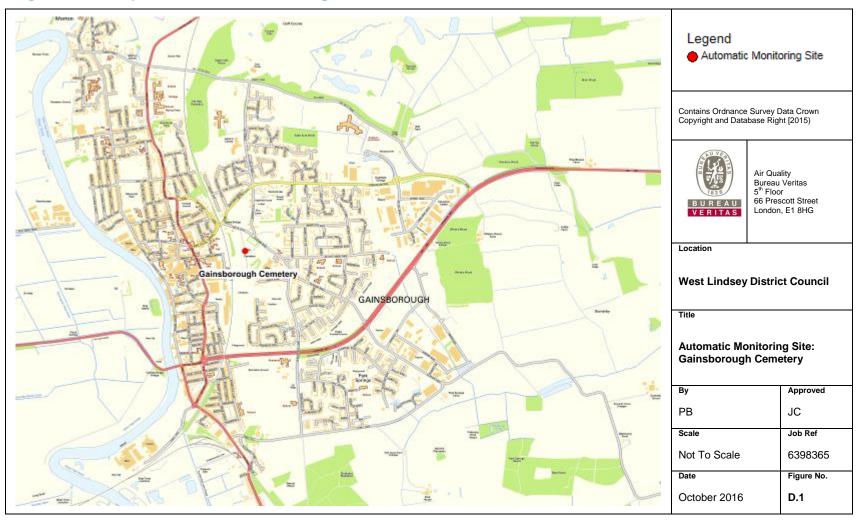
The local bias adjustment factor calculated for 2015 is 1.11. The triplicate monitoring site had a good data capture for the co-location study period (100% for diffusion tubes and 96.29% for the automatic monitor) with good precision recorded for all monthly monitoring periods. It was decided to use the local bias adjustment factor for the 2015 diffusion tube data. For comparison, the national bias adjustment factor for 2015 was 0.96 based on 15 studies.

For previous years data (2012 to 2014) presented in Table A.3 the bias adjustment factors have been taken from previous LAQM reports. The factors used were 0.82 (2012), 0.80 (2013) and 0.79 (2014). From 2012 a local bias adjustment factor derived from the co-location study at Gainsborough Cemetery has been used to bias adjust the diffusion tube results, previously to this the national bias adjustment figure had been used.

<sup>&</sup>lt;sup>5</sup> National Diffusion Tube Bias Adjustment Factor Spreadsheet version 09/16 available at http://laqm.defra.gov.uk/biasadjustment-factors/national-bias.html <sup>6</sup> Laqm.defra.gov.uk

#### **QA/QC** of Diffusion Tube Monitoring

The diffusion tubes for the year 2015 were supplied and analysed by Gradko International Ltd, the tubes were prepared using the 50% TEA in acetone preparation method. All results have been bias adjusted and annualised where required before being presented in Table A.3.


Gradko International Ltd is a UKAS accredited laboratory and participates in laboratory performance and proficiency testing schemes. These provide strict performance criteria for participating laboratories to meet, thereby ensuring NO<sub>2</sub> concentrations reported are of a high calibre. The laboratory follows the procedures set out in the Harmonisation Practical Guidance and participates in the AIR proficiency-testing (AIR-PT) scheme. Previously to the Air-PT scheme, Gradko participated in the Workplace Analysis Scheme for Proficiency (WASP) for NO<sub>2</sub> diffusion tube analysis.

Defra and the Devolved Administrations advise that diffusion tubes used for LAQM should be obtained from laboratories that have demonstrated satisfactory performance in the AIR-PT scheme. Laboratory performance in the AIR-PT is also assessed by the National Physical Laboratory (NPL), alongside laboratory data from the monthly NPL Field Inter-Comparison Exercise carried out at for Gradko at Marylebone Road, central London. A laboratory is assessed and given a 'z' score, a score of ± 2 or less indicates satisfactory laboratory performance.

Gradko International Ltd's performance for 2015 is covered by rounds AR006, AR007, AR009 and AR010 of the AIR-PT scheme, for each round 100% of the laboratories results were deemed to be satisfactory based upon a z score of  $\leq \pm 2$ . In 2015, the tube precision for NO<sub>2</sub> Annual Field Inter-Comparison for Gradko International using the 50% TEA in acetone method was 'good' for the results of all 14 participating local authorities.

# **Appendix D: Maps of Monitoring Locations**

Figure D.1 – Map of Automatic Monitoring Location



LAQM Annual Status Report 2016

Figure D.2 – Map of Non-Automatic Monitoring Sites: Gainsborough

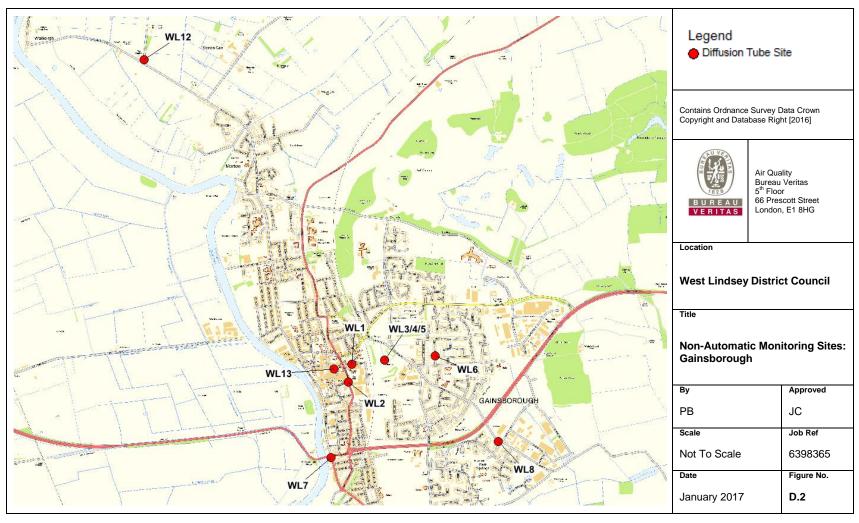
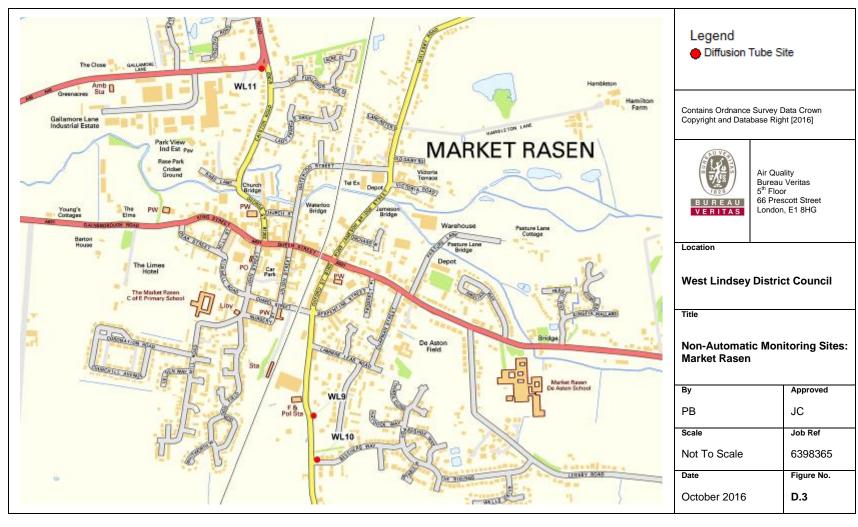




Figure D.3 – Map of Non-Automatic Monitoring Sites: Market Rasen



# **Appendix E: Summary of Air Quality Objectives in England**

Table E.1 – Air Quality Objectives in England

| Pollutant                          | Air Quality Objective <sup>7</sup>                                   |                |  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| Pollutarit                         | Concentration                                                        | Measured as    |  |  |  |  |  |  |
| Nitrogen Dioxide                   | 200 µg/m <sup>3</sup> not to be exceeded more than 18 times a year   | 1-hour mean    |  |  |  |  |  |  |
| (NO <sub>2</sub> )                 | 40 μg/m <sup>3</sup>                                                 | Annual mean    |  |  |  |  |  |  |
| Particulate Matter                 | 50 μg/m³, not to be exceeded more than 35 times a year               | 24-hour mean   |  |  |  |  |  |  |
| (PM <sub>10</sub> )                | 40 μg/m <sup>3</sup>                                                 | Annual mean    |  |  |  |  |  |  |
|                                    | 350 µg/m³, not to be exceeded more than 24 times a year              | 1-hour mean    |  |  |  |  |  |  |
| Sulphur Dioxide (SO <sub>2</sub> ) | 125 µg/m³, not to be exceeded more than 3 times a year               | 24-hour mean   |  |  |  |  |  |  |
|                                    | 266 µg/m <sup>3</sup> , not to be exceeded more than 35 times a year | 15-minute mean |  |  |  |  |  |  |

<sup>&</sup>lt;sup>7</sup> The units are in microgrammes of pollutant per cubic metre of air (μg/m³).

# **Glossary of Terms**

| Abbreviation      | Description                                                                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AQAP              | Air Quality Action Plan – A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'    |
| AQMA              | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives |
| ASR               | Air quality Annual Status Report                                                                                                                                                                      |
| Defra             | Department for Environment, Food and Rural Affairs                                                                                                                                                    |
| EU                | European Union                                                                                                                                                                                        |
| LAQM              | Local Air Quality Management                                                                                                                                                                          |
| NO <sub>2</sub>   | Nitrogen Dioxide                                                                                                                                                                                      |
| NO <sub>x</sub>   | Nitrogen Oxides                                                                                                                                                                                       |
| PM <sub>10</sub>  | Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less                                                                                                     |
| PM <sub>2.5</sub> | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less                                                                                                                             |
| QA/QC             | Quality Assurance and Quality Control                                                                                                                                                                 |

#### References

- Local Air Quality Management Technical Guidance LAQM.TG(16). May 2016.
   Published by Defra in partnership with the Scottish Government, Welsh
   Assembly Government and Department of the Environment Northern Ireland.
- Local Air Quality Management Policy Guidance LAQM.PG(16). May 2016.
   Published by Defra in partnership with the Scottish Government, Welsh
   Assembly Government and Department of the Environment Northern Ireland.
- West Lindsey District Council 2015 Updating and Screening Assessment.
- West Lindsey District Council 2014 Annual Progress Report.
- West Lindsey District Council 2013 Annual Progress Report
- West Lindsey District Council 2012 Updating and Screening Assessment.
- Central Lincolnshire Local Plan, Proposed Submission, April 2016.